
Commentary on the Paper: Challenges and Methods in Testing the

Remote Agent Planner

G. Michael Tong
Code 583

NASA Goddard Space Flight Center
Greenbelt, MD 20771

Gordon.M.Tong@gsfc.nasa.gov

Introduction

The 2nd NASA Workshop on Planning & Scheduling for
Space asked reviewers to provide a written commentary on
submitted papers. This commentary discusses the
following paper: Challenges and Methods in Testing the
Remote Agent Planner (the "paper"), which described the
approach used to test the software called the Remote Agent
planner (the "planner"). The Remote Agent software was
used to control the Deep Space 1 (DS1) spacecraft for two
days. The Remote Agent planner is a step towards
spacecraft autonomy where human intervention is not
required.

General Observations

Here are several general observations. First, planning and
scheduling systems are difficult to test. Second, flight
software operates in a more restricted environment than the
ground software. Third, simpler algorithms can be added
to the Remote Agent planner for use on specific missions
to facilitate testing.

Testing Planning and Scheduling Systems

Typically, planning and scheduling systems receive
requests and planning data as inputs and generate a
schedule of activities as an output. In evaluating the output,
there is no single correct answer or result. Two or more
schedules that have different scheduled activities and
different activity start times can be deemed correct by the
user. In contrast, for a command and telemetry system,
there is only one correct bit pattern for a particular
sequence of commands, and only one correct result in
converting a raw 8-bit telemetry point to engineering units.

The person who tests the planning and scheduling
system (the "tester") has the daunting task of evaluating the
output data without knowing what the correct answer
should be. The software programmer may be able to
calculate the correct answer manually by examining the
code and analyzing the system requirements; however, the
tester does not do this except for simple cases. Even for the
software programmer, the manual calculation of the correct

answer becomes impractical for a large number of
activities on the output schedule.

The Remote Agent planner uses an automated tool to
evaluate the correctness of the output schedule. The tool
uses an assertions database and first order predicate logic
(FOPL). More information about the tool appears in other
papers by the authors. However, the planner can generate
output that appears to be correct and passes the automated
tool checking, yet the planner still contains subtle bugs.

Flight Software Environment

The flight software environment has limitations. Typically,
the flight hardware is ten or more years behind the ground
hardware in system performance. The flight software and
hardware is an embedded system that has a limited amount
of main memory and disk storage. Most flight software
testing occurs on a special testbed rather than on the actual
spacecraft.

Intermittent problems can occur during flight system
testing. Repeatable problems are much easier to find and
debug than intermittent problems, which are difficult to
reproduce. Embedded flight software may not capture good
debugging information when an intermittent problem
occurs. Software programmers may be unable to solve
problems that occur only one time or that occur
infrequently because of an interrupt timing condition. The
"Test Harness" may not be in place when an intermittent
problem occurs. Of course, these mysterious problems are
worrisome.

The traditional approach to commanding the spacecraft
involves the use of command loads. The science user
generates a science plan that specifies a list of targets for
the instrument on the spacecraft to observe. A schedule is
produced that takes into account the time to take exposures
of the target and the time to slew (turning) from one target
to another target. A sequence of commands, called a
command load, is generated from the schedule and
uplinked to the spacecraft. The onboard computer executes
the command load, which is the plan or schedule for the
spacecraft. The Remote Agent performs these planning and
scheduling functions onboard that are traditionally done by
ground systems. It represents the trend of the migration of
ground functions to the flight software environment.

Simpler Algorithms

The paper described the dilemma of trying to select test
cases to cover the "paths through the search space." One
possibility would be to simplify the software under test
rather than trying to test complicated software. Simpler
algorithms could be added to the Remote Agent planner.
For example, fixed activity timelines similar to the Space
Shuttle Crew Activity Plan can be used to make the testing
problem manageable. This approach is suitable only for
scheduling applications that employ pre-stored scenarios.

Mission-specific algorithms could be developed. Those
algorithms would be designed to facilitate the testing.
Perhaps inheritance could be employed to make this
approach more general.

Another possibility is to formalize the simulation
approach. NASA typically employs simulations to test
complicated systems. The formalization would be an
extension of the methods described in the said paper, such
as "Multiple Variation Test Cases" and test automation
tools.

Specific Comments

Specific comments include (1) the description of "tokens"
is not clear, (2) the relationship between the use of formal
coverage metrics and the testing of heuristics is not clear,
and (3) the testing only describes one portion of the flight
software.

The paper defines tokens as follows: "The fundamental
execution units in the plan are tokens (activities). Tokens
also track spacecraft states and resources." However, the
names of the tokens in Tables 1 and 2 look like
attributes/properties or states, not objects/activities. The
initial state tokens in Table 2 do not appear to be
compatible with a class member initialization list approach.
The technical approach on the use of tokens may be
innovative, but it needs more explanation.

The paper advocates the need for formal coverage
metrics that measure coverage for a planner domain model.
However, the use of heuristics contributes to the testing
difficulties. Testing each heuristic individually is
straightforward. On the other hand, the interactions among
the executions of various heuristics produce a complicated
behavior that may result in the generation of an incorrect
plan. Sometimes, a heuristic-based algorithm may fail to
find a solution. In other words, if the goal is too difficult,
there may be no solution for a given situation. It is not
clear how formal coverage metrics can help in these cases.

Flight software testing is already expensive. While the
paper addresses only the testing of the planner portion of
the Remote Agent software, the testing of the other flight
software components is also challenging. For example, the
paper mentions other functions such as generating a list of
targets, calculating maneuvers, performing maneuvers,
calculating slews (turning) from one target to another
target, performing slews, taking images, and fault detection

and recovery. The cost of testing these flight software
functions is a factor.

Conclusion

The paper provides an account of the issues in testing a
complicated planning system, the approaches and
techniques that were used, the technical and conceptual
problems that occurred, and possible improvements and
research areas. The method for test case selection was
discussed, as well as the automation of some parts of the
testing process.

Testing an artificially intelligent agent requires
grappling with the solution space. The testing techniques
described in this paper may be applied to other artificial
intelligence applications.

